# **Sterile Neutrinos at High** $\Delta m^2$ ?

Michel Sorel

Columbia University

**CIPANP 2003** 

### **Outline**

- Motivations
- Current experimental constraints on two possible sterile neutrino models
- Which future experiments can find sterile neutrinos at high  $\Delta m^2$ ?

## **Theoretical Motivations**

• Sterile neutrinos = neutrinos with no standard weak couplings

#### **Theoretical Motivations**

- Sterile neutrinos = neutrinos with no standard weak couplings
- Proposed mechanisms to generate neutrino masses often involve adding right-handed neutrinos to the Standard Model
- Light sterile neutrinos can be hard to find experimentally, but not theoretically!

  Just pick your favorite theoretical direction...

#### **Theoretical Motivations**

- Sterile neutrinos = neutrinos with no standard weak couplings
- Proposed mechanisms to generate neutrino masses often involve adding righthanded neutrinos to the Standard Model
- Light sterile neutrinos can be hard to find experimentally, but not theoretically!

  Just pick your favorite theoretical direction...



- Grand Unified Theories
  Mohapatra, hep-ph/0107264, McKeller et al., hep-ph/0106121,...
- SuperSymmetry
  Dvali et al., hep-ph/9810257, Arkhani-Amed et al., hep-ph/0006312,...
- Extra-Dimensions
  Ioannisian et al., PRD63 073002, Ma et al., hep-ph/0006340,...

## **Experimental Motivations**

• There are three experimental hints pointing toward neutrino oscillations:



• Two-neutrino oscillation approximation:

$$\left(egin{array}{c} oldsymbol{
u}_{lpha} \ oldsymbol{
u}_{eta} \end{array}
ight) = \left(egin{array}{ccc} \cosartheta & \sinartheta \ -\sinartheta & \cosartheta \end{array}
ight) \left(egin{array}{c} oldsymbol{
u}_1 \ oldsymbol{
u}_2 \end{array}
ight), \; \Delta m^2 = m_2^2 - m_1^2$$

• Oscillation probabilities:

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sin^2 2\theta_{\alpha\beta} \sin^2 (1.27\Delta m^2 L/E), \ \alpha \neq \beta$$
$$P_{\nu_{\alpha} \to \nu_{\alpha}} = 1 - \sin^2 2\theta_{\alpha\alpha} \sin^2 (1.27\Delta m^2 L/E)$$

•  $\Delta m_{sol}^2 + \Delta m_{atm}^2 \neq \Delta m_{LSND}^2 \Rightarrow \text{need more than three massive neutrinos?}$ 

# The LSND Result $(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$



- $\bar{\nu}_{\mu}$  source from:  $\pi^+ \to \mu^+ \nu_{\mu}$   $\hookrightarrow e^+ \nu_e \bar{\nu}_{\mu}$
- $E_{\nu} = 20\text{-}53 \text{ MeV}, L_{\nu} = 25\text{-}35 \text{ m}$
- Liquid scintillator detects both Cherenkov and scintillation light

# The LSND Result $(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$



- $\bar{\nu}_{\mu}$  source from:  $\pi^+ \to \mu^+ \nu_{\mu}$   $\hookrightarrow e^+ \nu_e \bar{\nu}_{\mu}$
- $E_{\nu} = 20\text{-}53 \text{ MeV}, L_{\nu} = 25\text{-}35 \text{ m}$
- Liquid scintillator detects both Cherenkov and scintillation light

- 3.8 $\sigma \ \bar{\nu}_e \text{ excess:}$   $\langle P(\bar{\nu}_{\mu} \to \bar{\nu}_e) \rangle = (0.264 \pm 0.045 \pm 0.067)\%$
- $L_{\nu}/E_{\nu}$  distribution of the excess (backgrounds in green,red, fit to oscillation hypothesis in blue):



• From the experimental point of view, there is no need to introduce active-sterile neutrino mixing (even though it is still a possibility)

• From the experimental point of view, there is no need to introduce active-sterile neutrino mixing (even though it is still a possibility)







Atmospheric  $\nu_{\mu} \rightarrow \nu_{\mu}, \ \nu_{\mu} \rightarrow \nu_{e}, \ \nu_{\mu} \rightarrow \nu_{\tau}$ 

• From the experimental point of view, there is no need to introduce active-sterile neutrino mixing (even though it is still a possibility)







$$|U| = \begin{pmatrix} 0.70 - 0.87 & 0.50 - 0.69 & < 0.16 \\ 0.20 - 0.61 & 0.34 - 0.73 & 0.60 - 0.80 \\ 0.21 - 0.63 & 0.36 - 0.74 & 0.58 - 0.80 \end{pmatrix}$$

(Bandyopadhyay et al., PLB 559, 2003)

• CPT-conserving models, with sterile neutrinos:



• CPT-conserving models, with sterile neutrinos:



• CPT-violating models, with no sterile neutrinos: (G. Barenboim, "Is nothing sacred? CPT violation in neutrino physics", this session)



• CPT-conserving models, with sterile neutrinos:



• CPT-violating models, with no sterile neutrinos: (G. Barenboim, "Is nothing sacred? CPT violation in neutrino physics", this session)



I will discuss experimental constraints on these models (work in collaboration with J. Conrad, M. Shaevitz)

## Combined analysis of SBL experiments

- Short-baseline experiments on
  - 1.  $\nu_{\mu}$  disappearance (CCFR84, CDHS)
  - 2.  $\bar{\nu}_e$  disappearance (Bugey, CHOOZ)
  - 3.  $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$  appearance (LSND, KARMEN)

probe the same  $\Delta m^2$  range and the same matrix elements:

## Combined analysis of SBL experiments

- Short-baseline experiments on
  - 1.  $\nu_{\mu}$  disappearance (CCFR84, CDHS)
  - 2.  $\bar{\nu}_e$  disappearance (Bugey, CHOOZ)
  - 3.  $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$  appearance (LSND, KARMEN)

probe the same  $\Delta m^2$  range and the same matrix elements:

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_{s} \\ \vdots \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & U_{e5} & \dots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & U_{\mu 5} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} & U_{\tau 5} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} & U_{s5} \\ U_{s'1} & U_{s'2} & U_{s'3} & U_{s'4} & U_{s'5} \\ \vdots & & & & & & & & & & & & & \\ \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \\ \nu_{4} \\ \nu_{5} \\ \vdots \end{pmatrix}$$

• Only LSND demands  $U_{e4}U_{\mu 4} \neq 0$ , or  $U_{e5}U_{\mu 5} \neq 0$ , etc.

## Combined analysis of SBL experiments

- Short-baseline experiments on
  - 1.  $\nu_{\mu}$  disappearance (CCFR84, CDHS)
  - 2.  $\bar{\nu}_e$  disappearance (Bugey, CHOOZ)
  - 3.  $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$  appearance (LSND, KARMEN)

probe the same  $\Delta m^2$  range and the same matrix elements:

- Only LSND demands  $U_{e4}U_{\mu 4} \neq 0$ , or  $U_{e5}U_{\mu 5} \neq 0$ , etc.
- Is LSND consistent with the upper limits on active-sterile mixing at high  $\Delta m^2$  derived by the null short-baseline experiments (NSBL)?
- NSBL = Bugey + CHOOZ + CCFR84 + CDHS + KARMEN

# (3+1) models and SBL experiments





# (3+1) models and SBL experiments



- Three parameters probed:  $\Delta m_{41}^2$ ,  $U_{e4}$ ,  $U_{\mu 4}$  (SBL only: can assume  $\Delta m_{21}^2 = \Delta m_{32}^2 = 0$ )
- Oscillation probability:

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) = 4U_{e4}^{2}U_{\mu 4}^{2}\sin^{2}(1.27\Delta m_{41}^{2}L/E)$$

• Two-neutrino approximation is satisfied  $\Rightarrow$  define:

$$\Delta m^2 \equiv \Delta m_{41}^2, \quad \sin^2 2\theta_{\mu e} \equiv 4U_{e4}^2 U_{\mu 4}^2$$

# Treat NSBL and LSND data sets separately (3+1) case



• NSBL and LSND data sets are only marginally consistent with each other

# Combine NSBL and LSND data sets (3+1) case

• Assuming statistical compatibility of all SBL results, a joint analysis gives:



• Best-fit:  $\Delta m^2 = 23.8 \ eV^2$ ,  $U_{e4} = 0.13$ ,  $U_{\mu 4} = 0.22$ 

# (3+2) models and SBL experiments



# (3+2) models and SBL experiments



- Six parameters probed:  $\Delta m_{41}^2$ ,  $U_{e4}$ ,  $U_{\mu 4}$ ,  $\Delta m_{51}^2$ ,  $U_{e5}$ ,  $U_{\mu 5}$
- More than one  $\Delta m^2$  contributes to the oscillation probability:

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) = 4(U_{e4}U_{\mu4} + U_{e5}U_{\mu5})(U_{e4}U_{\mu4}\sin^{2}x_{41} + U_{e5}U_{\mu5}\sin^{2}x_{51}) - 4U_{e4}U_{\mu4}U_{e5}U_{\mu5}\sin^{2}x_{54}$$
$$x_{ji} \equiv 1.27\Delta m_{ji}^{2}L/E$$

• Use NSBL data to derive the upper limits on the  $\bar{\nu}_{\mu} \to \bar{\nu}_{e}$  probability averaged over the LSND L/E distribution:

$$p_{LSND} \equiv \langle P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \rangle_{LSND}$$

# Compare (3+2) and (3+1) models

• Allowed values for the LSND oscillation probability ( $\delta$  = confidence level value):



# Compare (3+2) and (3+1) models

• Allowed values for the LSND oscillation probability ( $\delta$  = confidence level value):



• Two sterile neutrino models fit SBL data significantly better

# Combine NSBL and LSND data sets (3+2) case

•  $(\Delta m_{41}^2, \Delta m_{51}^2)$  allowed region from joint NSBL+LSND analysis:



• Best-fit:

 $\Delta m_{41}^2 = 0.91 \ eV^2, \ U_{e4} = 0.12, \ U_{\mu 4} = 0.17, \ \Delta m_{51}^2 = 21.5 \ eV^2, \ U_{e5} = 0.07, \ U_{\mu 5} = 0.22$ 

# Combine NSBL and LSND data sets (3+2) case

•  $(\Delta m_{41}^2, \Delta m_{51}^2)$  allowed region from joint NSBL+LSND analysis:



• Best-fit:  $\Delta m_{41}^2 = 0.91 \ eV^2, \ U_{e4} = 0.12, \ U_{\mu 4} = 0.17, \ \Delta m_{51}^2 = 21.5 \ eV^2, \ U_{e5} = 0.07, \ U_{\mu 5} = 0.22$ 

# Cosmology and massive neutrinos

- $\bullet$  Standard cosmology ( $\Lambda$ CDM) assumes three active, massless, neutrinos, and no lepton asymmetry
- Observations  $\sim$  agree with predictions of standard cosmology:
  - 1. Primordial Helium (and Deuterium) abundance
  - 2. Amplitude and shape of large scale power spectrum

# Cosmology and massive neutrinos

- Standard cosmology ( $\Lambda$ CDM) assumes three active, massless, neutrinos, and no lepton asymmetry
- Observations  $\sim$  agree with predictions of standard cosmology:
  - 1. Primordial Helium (and Deuterium) abundance
  - 2. Amplitude and shape of large scale power spectrum
- In the simplest picture, massive sterile neutrinos with significant mixing to active neutrinos are expected to alter both these predictions, in disagreement with data

# Cosmology and massive neutrinos

- Standard cosmology ( $\Lambda$ CDM) assumes three active, massless, neutrinos, and no lepton asymmetry
- Observations  $\sim$  agree with predictions of standard cosmology:
  - 1. Primordial Helium (and Deuterium) abundance
  - 2. Amplitude and shape of large scale power spectrum
- In the simplest picture, massive sterile neutrinos with significant mixing to active neutrinos are expected to alter both these predictions, in disagreement with data

Example: primordial He/H ratio  $Y_p$  as a function of the baryon-to-photon ratio (Di Bari, astro-ph/0302433)



# Cosmology and massive sterile neutrinos (cont'd)

• Predictions of standard cosmology assume that sterile neutrino species are present in the early Universe in the same abundances as the active species

# Cosmology and massive sterile neutrinos (cont'd)

- Predictions of standard cosmology assume that sterile neutrino species are present in the early Universe in the same abundances as the active species
- Several mechanisms have been proposed that would suppress the sterile neutrino abundances in cosmology (for a review, see: Abazajian, astro-h/0205238)
- Full oscillation formalism (multi-flavor, matter resonances, etc.) still missing in the calculations

# Cosmology and massive sterile neutrinos (cont'd)

- Predictions of standard cosmology assume that sterile neutrino species are present in the early Universe in the same abundances as the active species
- Several mechanisms have been proposed that would suppress the sterile neutrino abundances in cosmology (for a review, see: Abazajian, astro-h/0205238)
- Full oscillation formalism (multi-flavor, matter resonances, etc.) still missing in the calculations
- Cosmological constraints on sterile neutrinos should be taken with caution, and in any case complemented with terrestrial experiments (where the interpretation of data is easier)

# Future sterile neutrino searches at high $\Delta m^2$

- The unitarity of the mixing matrix means that  $\sim$  all of the mixing parameters measurements constrain active-sterile mixing, at least indirectly:
  - Improve limits on  $(\nu_e \to \nu_s)/(\nu_e \to \nu_{\mu,\tau})$  at  $\Delta m_{\rm solar}^2$  (Example: next-generation, real-time pp solar neutrino experiments)
  - Improve limits on  $(\nu_{\mu} \rightarrow \nu_{s})/(\nu_{\mu} \rightarrow \nu_{\tau})$  at  $\Delta m_{\rm atm}^{2}$  with LBL accelerator experiments (see: H. Gallagher, "MINOS Experiment Update", this session)
  - Improve reactor limits on  $\nu_e \to \nu_x$  over a wide  $\Delta m^2$  range (Example: expected sensitivity of next-generation experiments)

# Future sterile neutrino searches at high $\Delta m^2$

- The unitarity of the mixing matrix means that  $\sim$  all of the mixing parameters measurements constrain active-sterile mixing, at least indirectly:
  - Improve limits on  $(\nu_e \to \nu_s)/(\nu_e \to \nu_{\mu,\tau})$  at  $\Delta m_{\rm solar}^2$  (Example: next-generation, real-time pp solar neutrino experiments)
  - Improve limits on  $(\nu_{\mu} \rightarrow \nu_{s})/(\nu_{\mu} \rightarrow \nu_{\tau})$  at  $\Delta m_{\rm atm}^{2}$  with LBL accelerator experiments (see: H. Gallagher, "MINOS Experiment Update", this session)
  - Improve reactor limits on  $\nu_e \to \nu_x$  over a wide  $\Delta m^2$  range (Example: expected sensitivity of next-generation experiments)

- Direct searches at high  $\Delta m^2$ :
  - Test  $\nu_{\mu} \rightarrow \nu_{e}$  signal at  $\Delta m_{\rm LSND}^2$ : MiniBooNE
  - Improve limits on  $\nu_{\mu} \to \nu_{s}$ ,  $\nu_{\mu} \to \nu_{\tau}$  at  $\Delta m_{\rm LSND}^{2}$  with SBL accelerator experiments (Example:  $\nu_{\mu} \to \nu_{x}$  sensitivity for FINeSE+MiniBooNE)
  - $\Delta m_{\rm LSND}^2$  range is not known precisely  $\Rightarrow$  several SBL experiments help

• Sterile neutrinos can explain the LSND result (if due to oscillations), and might explain the origin of neutrino masses

- Sterile neutrinos can explain the LSND result (if due to oscillations), and might explain the origin of neutrino masses
- Combining LSND with other oscillation results provides hints where to look

- Sterile neutrinos can explain the LSND result (if due to oscillations), and might explain the origin of neutrino masses
- Combining LSND with other oscillation results provides hints where to look
- Based on a combined analysis of SBL data, (3+1) models are marginally allowed

- Sterile neutrinos can explain the LSND result (if due to oscillations), and might explain the origin of neutrino masses
- Combining LSND with other oscillation results provides hints where to look
- Based on a combined analysis of SBL data, (3+1) models are marginally allowed
- (3+2) models: additional active-sterile mixing from a second massive sterile neutrino describes existing SBL results without any "statistical stretches"

- Sterile neutrinos can explain the LSND result (if due to oscillations), and might explain the origin of neutrino masses
- Combining LSND with other oscillation results provides hints where to look
- Based on a combined analysis of SBL data, (3+1) models are marginally allowed
- (3+2) models: additional active-sterile mixing from a second massive sterile neutrino describes existing SBL results without any "statistical stretches"
- Conclusive test of the LSND evidence for oscillations in 2005, with the MiniBooNE  $\nu_{\mu} \rightarrow \nu_{e}$  result

- Sterile neutrinos can explain the LSND result (if due to oscillations), and might explain the origin of neutrino masses
- Combining LSND with other oscillation results provides hints where to look
- Based on a combined analysis of SBL data, (3+1) models are marginally allowed
- (3+2) models: additional active-sterile mixing from a second massive sterile neutrino describes existing SBL results without any "statistical stretches"
- Conclusive test of the LSND evidence for oscillations in 2005, with the MiniBooNE  $\nu_{\mu} \rightarrow \nu_{e}$  result
- If LSND is confirmed, additional  $\nu_{\mu} \rightarrow (\nu_e, \nu_{\mu}, \nu_{\tau})$  measurements at SBL are very important to disentangle the neutrino mass and mixing pattern

# $\bar{\nu}_e$ disappearance sensitivity of future reactor experiments

Plot from: J. Link, "The future of Neutrino Experiments at Nuclear Reactors", ACCF, Thursday session (go back)



• See also: K. M. Heeger, "Reactor Neutrino Measurements of  $\theta_{13}$ ", NEU, this session

## $\nu_{\mu} \rightarrow \nu_{e}$ appearance sensitivity in MiniBooNE

- T. L. Hart, "Neutrino Oscillation Search at MiniBooNE", NEU, Tuesday session
- MiniBooNE will address in a definite and independent way the LSND evidence for  $\bar{\nu}_{\mu} \to \bar{\nu}_{e}$  oscillations



- definite: same  $L_{\nu}/E_{\nu}$  ratio as for LSND and enough statistics to cover the LSND region at the  $5\sigma$  level
- independent:  $E_{\nu} = 0.3 1.5$  GeV and  $L_{\nu} = 540$  m are both a factor of 10 larger than LSND, resulting in very different backgrounds to the oscillation search and systematics for the neutrino flux and particle ID (go back)

# $\nu_e$ disappearance sensitivity with MiniBooNE + FINeSE

Plot from: B. T. Fleming, J. Monroe (go back)



• M. O. Wascko, "Neutrino Physics at FINeSE", NEU, this session